Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives

نویسندگان

چکیده

: Singular systems play an important role in many fields, and some new fractional operators, which are general, have been proposed recently. Therefore, singular on the basis of mixed derivatives including integer order derivative generalized operators studied. Firstly, Lagrange equations within established, primary constraints presented for systems. Then constrained Hamilton constructed by introducing multipliers. Thirdly, Noether symmetry, Lie symmetry corresponding conserved quantities Hamiltonian investigated. And finally, example is given to illustrate methods results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

lie symmetry analysis for kawahara-kdv equations

we introduce a new solution for kawahara-kdv equations. the lie group analysis is used to carry out the integration of this equations. the similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

Noether Symmetry in f(T) Theory at the anisotropic universe

As it is well known, symmetry plays a crucial role in the theoretical physics. On other hand, the Noether symmetry is a useful procedure to select models motivated at a fundamental level, and to discover the exact solution to the given lagrangian. In this work, Noether symmetry in f(T) theory on a spatially homogeneous and anisotropic Bianchi type I universe is considered. We discuss the Lagran...

متن کامل

Singular Lagrangian Systems and Variational Constrained Mechanics on Lie Algebroids

The purpose of this paper is describe Lagrangian Mechanics for constrained systems on Lie algebroids, a natural framework which covers a wide range of situations (systems on Lie groups, quotients by the action of a Lie group, standard tangent bundles...). In particular, we are interested in two cases: singular Lagrangian systems and vakonomic mechanics (variational constrained mechanics). Sever...

متن کامل

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14061225